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NON-LINEAR DIFFUSION
I. DIFFUSION AND FLOW OF MIXTURES OF FLUIDS

By J. E. ADKINS
Department of Theoretical Mechanics, University of Nottingham

(Communicated by A. E. Green, F.R.S.—Received 20 December 1962)
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A theory for the flow and non-linear diffusion effects in mixtures of fluids is formulated based
upon hydrodynamical considerations. It is assumed that each point of the mixture is occupied
simultaneously by all constituents in given portions. The motion of each constituent is governed
by the usual equations of motion and continuity. The mechanical properties of each component are
specified by means of constitutive equations for the stresses; diffusion effects are accounted for by
means of a body force acting on each constituent which depends upon the composition and relative
motion of the substances in the mixture. The theory is extended to deal with the diffusion of a
mixture of fluids through a rigid solid.

The theory is applied to a number of steady-state problems involving non-Newtonian fluids
including the diffusion of a fluid through a rigid plate, the laminar flow of a mixture and the flow
of a mixture between rotating cylinders. The propagation of plane waves through a homogeneous
mixture of viscous fluids at rest is also examined.

1. INTRODUCTION

The problem of diffusion, involving the flow relative to each other of two or more quan-
tities in space, is an important one in the study and application of the mechanics of continua.
The classical treatment of the diffusion problem, which is essentially a linear one, is based
upon Fick’s law, which assumes that the rate of flow of a diffusing quantity is a linear
function of the space derivatives of its concentration. When this constitutive law is sub-
stituted into a relation expressing the law of conservation of the diffusing substance there
results the standard diffusion equation. This equation, in its more usual applications, is
concerned with the transfer of heat and of mass. Modifications of Fick’s law, usually linear,
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608 J. E. ADKINS

are normally introduced when coupled phenomena need to be taken into account, and the
conservation law is affected by chemical reactions and other phenomena. Accounts of
classical diffusion theory, with references to original theoretical and experimental work
have been given by Barrer (1941), Jost (1952), Bosworth (1956), Crank (1956) and others.
Linear coupled phenomena, with special reference to Onsager’s relations are discussed by
de Groot (1951).

In a re-examination of the problem for a mixture of fluids, Truesdell & Toupin (1960,
§§ 158, 215, 295) have pointed out that in this case, since the diffusion process involves the
relative motion of the constituents of the mixture, a transfer of momentum between com-
ponents is involved. They suggest an approach to the formulation of constitutive equations
for diffusion based on this idea. In many practical cases the omission of momentum terms
from the equations describing a diffusion process is unimportant since velocities at any
point of the medium are small. This is usually true, for example, in the case of a hetero-
geneous mixture of fluids which is at rest apart from the motion arising from diffusion, for
the case of gases and liquids diffusing into solids, and of solids diffusing into each other.
When a mixture of fluids is in motion, we have, in effect, a combination of two different
kinds of problem. The first is that of simple fluid flow in which all constituents of the mixture
are moving with the same velocity at any given point and no diffusion effects are present.
The second is that of simple diffusion, in which the constituents of the mixture are moving
relative to each other, but in such a manner that the mean velocity of the mixture at each
point is zero. When both kinds of flow are present, momentum effects may become im-
portant and a theory is required which takes into account not only such effects but also
the mechanical properties of the individual constituents. Both influences may evidently
affect the resultant process in a linear or a non-linear manner. The mixing of different
fluids also occurs much more rapidly under conditions of turbulent flow, but it is assumed
here that this situation does not arise.

In the present paper, a theory of non-linear diffusion is developed based effectively upon
the approach of Truesdell & Toupin. The assumption, usual in the treatment of mixtures,
is made that each point within the medium can be occupied simultaneously by the several
constituents. On a macroscopic scale, this assumption probably yields a good approximation
to the actual situation which exists; in any small but finite element of volume we might
expect to find some or all constituents present in a given proportion, this proportion
varying continuously throughout the medium. For each constituent we assume that
kinematic and mechanical quantities such as velocity, acceleration, density, stress and body
force per unit mass may be defined, and that with the aid of these, equations of motion and
of conservation of mass may be written down. For a mixture of » components, this pro-
cedure yields a system of 4z partial differential equations.

It is assumed that within the mixture, the properties of any given component are defined
by means of constitutive equations relating the partial stress tensor, the density (or con-
centration) and the kinematic quantities, such as velocity gradients, acceleration gradients
and their successive time derivatives, for that component. The procedure for formulating
these equations, and for satisfying the necessary invariance requirements is identical with
that for single component systems (see, for example, Green & Rivlin 1957, 1960; Pipkin
& Rivlin 1960; Green & Adkins 1960).
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NON-LINEAR DIFFUSION. I 609

To account for diffusion phenomena, it is assumed that the body force acting on a given
component, and expressed per unit mass of that component, can be subdivided into an
extraneous body force, identical in character with that for single component systems, and
a diffusive force. This diffusive force depends upon the composition of the mixture at the
point under consideration and upon the relative velocities of its constituents. The form of
this force is restricted to satisfy the necessary requirements for invariance of the properties
of the mixture under rigid body motions.

The basic theory for a mixture of fluids is formulated in Cartesian co-ordinates in §§ 2
to 4 and extended to the case where the fluids are diffusing through arigidsolidin § 5. Here,
the symmetry properties of the solid affect the form of the diffusive force and results for
solids which are isotropic, transversely isotropic, and aeolotropic with certain crystal
symmetries are given. The relation of the present formulation to Fick’s law in the classical
theory of diffusion is given in §7. A more detailed examination of classical theories of
diffusion based on alternative kinematical, hydrodynamical, kinetic and thermodynamic
assumptions has been made by Truesdell,} who has also proposed a more general linear
theory. '

Some problems in steady-state diffusion and the steady flow of mixtures are examined
on the basis of the present theory in §§ 8 to 10. Attention is restricted to non-Newtonian and
classical fluids; there is no difficulty of principle in extending the analysis to more general
visco-elastic mixtures. A general feature predicted by the present theory is the tendency for
the components of an initially homogeneous mixture in non-uniform flow to separate out.
In the cases investigated this emerges as a specifically non-Newtonian effect.

In the final sections of the paper the propagation of plane (sound) waves through a homo-
geneous two-component mixture is examined. As in the case of a simple fluid, longitudinal
and transverse waves may be examined separately, and attenuation and dispersion effects
appear. For a two-component mixture, however, the two coupled systems of equations lead
to two possible wave velocities at a given frequency for each kind of wave. When the
diffusive force is small, these velocities tend towards the values for each individual fluid in
the absence of the other; when the diffusive force is large, the two wave numbers are
replaced by a single finite value.

To avoid undue complication, attention has been restricted in the present paper to a
comparatively simple non-linear theory of diffusion based purely upon hydrodynamical
considerations. Within this hydrodynamical framework a number of generalizations could
be made. It would be possible, for example, to postulate that the partial stress tensor for
a given fluid should be dependent not only upon the kinematical quantities defined for the
fluid itself, but also upon the concentrations, velocity gradients, acceleration gradients,
and time derivatives of these quantities defined, at the point under consideration, for the
other fluids in the mixture. This would give an explicit coupling of mechanical properties.
Again attention has here been confined to the case where the diffusive forces depend only
upon the densities of the components at a given point and upon their relative velocities.
A possible generalization would make these diffusive forces dependent in addition upon
velocity gradients and their time derivatives and also, conceivably upon density or

T ‘Mechanical aspects of diffusion’ (1962). The author is indebted to Professor Truesdell for making
available a manuscript of this paper, and for a stimulating discussion on the general problem of diffusion.

74-2
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610 J. E. ADKINS

concentration gradients. Further generalizations might permit the explicit appearance of
time derivatives of stress or of diffusive force in the respective constitutive equations, as, for
example, occurs in the theory of hypo-elasticity (Truesdell 1955), or an expression of the
stress and diffusive force as functionals of the independent kinematic quantities as sug-
gested by Green & Rivlin (1957, 1960) in considering memory effects. Invariance con-
siderations alone are insufficient to exclude the possibility of generalizations of this kind.
Finally, thermodynamic aspects and the problem of thermal diffusion, and the possibility
of chemical reactions and other effects within the mixture have been excluded at this stage.

GENERAL FORMULATION

2. NOTATION AND FORMULAE

We consider a mixture of # substances <, (r = 1, 2, ..., n) which are in motion relative to
each other. We make the assumption customary in treating diffusion problems that each
point P within the mixture is occupied simultaneously by each of the substances &, these
substances being present in the mixture at that point in specified proportions. We further
assume that to each of the diffusing substances at the point P we can assign distinct kine-
matic quantities, such as velocity and acceleration, and mechanical quantities such as
stress and body force. We may then define mean values for the velocity and acceleration
of the mixture at the point P, while the total stressT and extraneous body force acting on the
mixture at this point is the sum of the partial stresses and body forces respectively for each
of the components ..

We refer the motion to a fixed system of rectangular Cartesian co-ordinates x;. We suppose
that a particle of the substance & which is at 7, at the current time ¢, was at the point
x{"” atinitial time ¢ = 0. We assume that at the point y; at time ¢ the substance <, has velocity
v, with components »{” relative to the x; axes. These components are given by

v = ©Dy,/Dt, y, = yz-(x}”, £), (2-1)

where @D/Dt denotes differentiation with respect to ¢ holding the co-ordinates {” constant.
If the density of substance &, at y; is p,, the density of the mixture is

p=2p (2-2)

and the mean velocity v of the mixture at this point is given by

PV =20V, (2-3)

1 This definition of total stress differs from that used by Truesdell, who includes terms involving relative
velocities. Predictions of the two theories would differ when stress boundary conditions are involved. The
present theory can be made formally equivalent to Truesdell’s if relative velocities are included in the con-
stitutive equations for the stresses.

1 For convenience in considering the situation at a fixed point within the mixture at current time ¢ we
shall refer to the reference frame y;, it being understood that the y; axes are fixed and coincident with the
x; system.,
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NON-LINEAR DIFFUSION. I 611

We observe that if ¢ = ¢(y,, ) is any (scalar or tensor) function of the co-ordinates y;
and ¢, and d/0¢ denotes differentiation with respect to ¢ holding the co-ordinates y; constant,

then @D ¢ K ¢

TR TR & (2:4)

where, in (2-4) and subsequently, summation is carried out over repeated indices unless
otherwise indicated. If we define the operator D/D¢ by

D 3, 3

== = — 2.
Di s 'm dy,,’ (2:5)
where v,, are the components of v, then from (2-2) and (2-3)
D r. D
p Dgf 2 /Dy Dt¢ (2-6)
The diffusion velocity U, of component %, may be defined by
U,=v,—vV, (2:7)
and by virtue of (2-2) and (2-3) this relation may be rewritten
pUr = glps‘(Vr—vs)‘ (28)
From (2-8) we observe that i p, U, =0. (2-9)
r=1

If we assume that none of the substance %, is removed or generated by chemical reactions,
adsorption or similar processes, the equation of continuity for this constituent takes the form

dp, 0 ©Dp, 9vf”

() — — . .
¥ +3 (p, ) = =11 Dt TP 3, =0 (r=1,2,...,n; r not summed). (2-10)
By adding the z equations (2-10) and making use of (2-2) and (2-3) we obtain for the mixture
as a whole
dp 0 _Dp 0y )
ot Ty, () =y teg, =0 (211)

We postulate that for each constituent &, there exists a partial stress tensor o,, with
components {7 at y; referred to the x; axes, which depends only upon the concentration of &,
and upon its motion. We further define a total body force vector ‘F, per unit mass of &,
which is regarded as acting only upon the component &, and a vector f, defining the
acceleration of & at ;. We may then suppose that the movement of each constituent & is
governed by the equation of motion

) "1y (7)
dafp) Do [00 e (r)

av(r
LR — (r) — —
En +p, N =p, [ =p, Di 7 ] (r=1,2,...,n; r not summed),

(2:12)

where &, f” are the components of ‘F,, f,, respectively referred to the y; axes.

We assume that the effect of diffusion can be accounted for by the nature of the body
force in equation (2-12). We therefore write

F,=F,+%¥, (r=1,2..,n), (2:13)
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612 J. E. ADKINS

where F, is the extraneous body force acting on the material &, and ¥, arises from the
diffusion process, that is, from the influence of the other materials in the mixture. If we
regard the quantities ¥, purely asinteraction forces betweeen the components of the mixture,
we obtain from (2-13) "

) (2:14)
¥ -0,
Zl 0¥,

where F is the total extraneous body force acting per unit mass of the mixture at g, The
addition of the z equations (2-12) then yields

003/0y+pF; = pfs (2:15)
where f; are the components of the mean acceleration vector f defined by
k=3, (2:16)
r=1
and 0y = i oy (2-17)
r=1

3. CONSTITUTIVE EQUATIONS FOR FLUIDS

We assume that the mechanical properties of the fluid <, depend only upon the quan-
tities specifying the motion of &, and its concentration in the mixture. We therefore suppose
that in the constitutive equations for %, the components of the stress tensor o, are poly-
nomials in the velocity gradients dMu(”/dy;, acceleration gradients d @v("”/dy;, ..., (n,—1)th
acceleration gradients d®{”/dy;, for all possible motions, where

(l)vgr) — vgr), (2)v§r) . f gr),

P~ (i)
*%557?272 = (%+ v%) %’;) (17_17)57') (p = 2’ 3’ e nr) *
We further suppose that ¢{ are continuous single-valued functions of the density p, without
singularities within the range of values which needs to be considered.T We therefore write
PP
Y OYx Y
It would be possible to postulate dependence of ¢ff) upon higher-order space derivatives
of the velocity and accelerations ¥»{” and upon space derivatives of the density p,. The
possibility is, however, not examined here. Time derivatives ®D4p,/Dt? may be excluded
from (3-2) by virtue of (2-10). The velocity and acceleration components (¥»{” cannot occur
if the stresses are to be independent of rigid body translational motions of the mixture as
a whole.
If the stresses (3-2) are to be independent of rotational rigid body motions of the medium
as a whole, it may be shown that ¢y can be expressed in the form

o = FP(p,; VAR, @AD, ..., 0047 (r=1,2,...,n), (3-3)

1 It is to be understood that any subsequent indication that a function is dependent upon one or more
of the densities p, is intended to imply, without further comment, that the function is continuous and single
valued in these arguments without singularities within the relevant range of values.

(3-1)

Oy

) (r—1,2,...,n). (3-2)
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NON-LINEAR DIFFUSION. I 613
T D
WAD — 4D — J
where AP = A ( o, + 3%)
NDB-HA® v v (3-4)
WAP w= U (= DA®) (b-1) 4
DA Di (=D AS s + A = 3,

(p=1,2,...,n,;7=1,2,...,n; r not summed).

In (3:3), the functions FY are symmetric isotropict tensor functions of the symmetric
tensors (WA, which are polynomials in the components ¥4’ and are also functions of p,.
The reduction of (3-2) to the form (3-3), with references to original papers, is given in Green
& Adkins (1960).

The further reduction of (3-3) to closed form follows from the work of Spencer & Rivlin
(19594a,b, 1960) and of Spencer (1961). When ¢{? depends only upon p, and the single

tensor A, it may be expressed in closed form by the matrix equation
o, = ¢ 1+9P A, 40 A2, (3-5)
where o, = 0P|, A, = [l4%], (3-6)

I is the unit matrix and ¢{°, ¢{” and ¢{’ are polynomials in

trA,, trA?, trA} (trA = traceA), (3+7)
with coeflicients which are functions of p,. For some purposes it is convenient to replace
(#5) by the form 5, = (=, A90) T4 A, +4 A%, (%)

where p, is a scalar function, which may depend upon p,, and ¢$°, ¢{”, ¢4’ have the functional
forms already indicated.

In the foregoing discussion we have assumed that the stress components ¢ depend only
upon the quantities p,, 9" /dy; (or P AP) defined for the substance <. ThlS implies that
there is no coupling, as far as the internal stresses are concerned, between the constituents
of the mixture, although one might expect different functions /% or F{ in (3-2) and (3-3)
to apply to different mixtures. A more general theory could evidently be considered in
which each of the stress components ¢{ depends upon all of the arguments p,, p,, ..., p,,
Py, ..., 0@V /dy,, ..., 07 [0y, ..., 0(”")v§”)/3yk. The formulation presents no difficulties
of principle, and restrictions imposed by invariance considerations may be obtained by the
method indicated by Green & Adkins (1960).

This kind of approach has been used by Biot (1956 4,5) in considering the related problem
of the flow of an ideal fluid through an elastic medium.

4. CONSTITUTIVE EQUATIONS FOR DIFFUSIVE FORCES

We assume that the diffusive forces ¥, depend upon the composition of the mixture at
the point y; and upon the relative motions of its constituents, that is, upon the densities p,
and upon the diffusion velocities U,.

We first observe that the differences v, —v, are unaffected by a rigid body translational
motion of the mixture. For if this motion has velocity a, each of the velocities v, is increased

T We restrict attention to isotropic fluids. Constitutive equations for anisotropic fluids have been
proposed by Ericksen (1960a,b).
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614 | J. E. ADKINS

to v,-+-a and their differences are unaltered. From (2-8) we see that this also implies that
the quantities U, are unchanged.

We now consider a motion of the medium which differs from the actual motion at time
t only to the extent of an arbitrary rigid body rotation. The co-ordinates 7; of a typical par-
ticle P, which in the original motion is at y;, are therefore given by

¥ = My, (4-1)

where M; = M;() are a set of continuous functions of ¢ defining the rigid body rotation
and are therefore subject to the conditions

Mr%r = MiMj - 5,;;', l‘l%jl = 1. (42)

For the substance <, we may write

.771' = yi(xy)a t): (4'3)
D7, _©D "DM,;
) = - 0 = Mo .
Dt Dt (ijj) MJU +y] Dt * (4: 4)
A similar relation holds for 7, with s substituted for r (r == 5). Moreover, since the quan-
tities M;; are functions only of 7, independent of ", 4 (or y,), VDM,;/Dt = ODM,;/D¢t and
PO =0 = M0 1) (1,5 =1,2,..., n;7 =k 5). (4-5)
Similarly, for the mean velocity v we have
n "Dy
po; = Z P =30 y’
“Dy, , VDM,

3 | Mmooy (4:6)

and remembering (2-2), (2:3) and (2-6) we obtain
00—y = My (o] — ). (47)

The differences v — (), v{” —v, thus behave as the components of vectors which are in-
dependent of rigid body motions of the mixture as a whole. We may therefore postulate

the constitutive law ¥ —% (p,U) (rsi=1,2,..,1), (4-8)
or ¥, =Y (p,, Vp—Vq) (r,s, poq=1,2,...,n), (4-9)

for all possible motions. In (4:8) and (4-9) ¥, are vector functions of the arguments in-
dicated which we suppose to be polynomials in the components of U, or of v,—v,. The
functional forms of ¥, for a given system are in general different in (4-8) and (4-9).

The formulations (4 8) and (4-9) are symmetrical in the relative velocities U, or v, —v,,
but we see from (2-8) and (2-9) that these velocities are not all linearly independent. To
eliminate redundancies in the elements we may note that

VI)_V{I = (Vﬁ——vn) _‘(Vq—vn)n (4:10)
and write ¥, =% (p,u) (r,s=1,2,...,n;t=1,2,...,n—1), (4-11)
where U, = V,—V,, (4"12)

and we again regard ¥, as a vector polynomial function of the components #* of the
velocities u


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NON-LINEAR DIFFUSION. I 615

We may readily infer that the functional forms (4-8), (49) and (4-11) are those appro-
priate to mixtures of isotropic materials. We consider explicitly the form (4:11), and to
deduce the isotropic property and derive constitutive equations in closed form, it is con-
venient to use the technique employed by Pipkin & Rivlin (1960) and Adkins (1960a,5).
We define an arbitrary vector q with components ¢; referred to the system y; and form the
scalar products

OV = q.¥, = ¢, = O (g;; p, u?) (r,5=1,2,...,n;¢=1,2,...,n—1). (4:13)

The functions @ are linear and homogeneous in the components of q and the components
W are given uniquely by W 30)dg. (4-14)

If the properties of the mixture are unaffected by superposed rigid body motions, the
functions @ must be invariant under all transformations of the type specified by (4-1) and
4-2). This implies that
(42). This imples tha OO(g; pos ) = PG5 pss W), (4:15)
where G = My g, U = Myu, (4-16)

and M, satisfy (4-2). The conditions (4-15) imply that the functions (4-13) are isotropic
functions of ¢;, #® and that the forms (4-11) for ¥, are those appropriate to mixtures of
isotropic materials.

If each component of the mixture is isotropic with a centre of symmetry, each of the
functions @ satisfies an invariance requirement of the form (4:15), but the quantities
M, in (4-16) now satisfy the conditions

Mkjujk = MciMcj = 3;'1, |Mk| =1 (4’17)

Since @ is a polynomial in the elements g;, u{” it follows (Weyl 1946) that it can be expressed
as a polynomial in the scalar products

u.u, (i), ue.q (i) (st=1,2,...,2—1), (4-18)
which is linear and homogeneous in the invariants (ii). From (4:14) we infer that

W =T (= 1,2,.0m), (419)
o=
where ¢(7} are polynomials in the invariants (4-18) (i) which are continuous functions of
the densities p,.

More generally we might suppose that ¥, depends upon relative accelerations of the
constituents at any point and upon higher-order time derivatives of U, or u,. Yet another
extension of the theory would follow from the assumption that ¥, may depend upon the
rate at which the constituents in the mixture are deforming, that is, upon the velocity
gradients dv{/dy; and upon the successive acceleration gradients 9w /dy;. The manner in
which relative accelerations or the velocity and acceleration gradients can occur in the
functions ¥, must be restricted by invariance considerations and a method for obtaining
permissible functional combinations of these quantities has been indicated by Green &
Adkins (1960).

75 Vor. 255. " A.
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616 J. E. ADKINS

5. DIFFUSION OF A SYSTEM OF FLUIDS THROUGH A RIGID SOLID

In considering the diffusion of a fluid or a mixture of fluids into a solid medium, we
might expect the diffusing forces ¥, to produce an effect in deforming the solid medium
itself. This effect is often likely to be small, however, and in the classical treatment of many
diffusion problems the assumption is made that the solid may be regarded as rigid (see,
for example, Crank 1956). If we make this assumption in the present instance, a theory of
diffusion into solids may be formulated which is based on the results of §§ 2 to 4.

For the substances &, ..., %, equations (2:1) to (2-6) and the field equations (2-10) to
(2-12), with the body forces ‘F, given by (2-13), continue to apply. The relations (2-14),
however, are no longer valid, since the solid may be regarded as exerting a resultant
diffusive force on the fluid mixture.

In considering the diffusive forces, we may regard the rigid solid as the (z-1)th material
&, .1 = of the diffusing system. For this material, when the solid is at rest, we have

XD =y V=0, (5:1)
The diffusive forces ¥, are then regarded as functions of the diffusion velocities

V=V, =V, (t=12,...,n) (5-2)
relative to the solid &.

We examine the situation in which the solid & may be aeolotropic and choose three
mutually orthogonal unit vectors h,, h,, h,, fixed in &, to specify its orientation. The diffu-
sive forces ¥, may then be regarded as polynomial functions of the diffusion velocities
(5-2) and the vectors h,, these forces depending also upon the densities p,. We therefore write

¥, =% (p, Vv, hy) (r,5,0=1,2,...,n) (5-3)
and the scalar functions ®® defined by (4-13) now take the form
O = O0(q; p,, v, ) (1,85t =1,2,...,n).
If the system is to be unaffected by the rigid body motions specified by (4-1) and (4-2), the

functions ®® must be isotropic functions of their arguments and may be expressed as
polynomials in the scalar products and scalar triple products formed from the vectors
q, v, h, (Weyl 1946), which are linear and homogeneous inthe components of . We may
without loss of generality, choose the x; axes so that the vectors h, lie along them, and then
h1: (1,0,0), h2: (0, ].,0), h3:(0,0, ]-)o

In this case h,.v0 = ¢
and the functions ®® may be written

PN = QN (g;; p,, i) (1,8, =1,2,...,n). (5-4)

In the present instance, the functions ®® are not necessarily isotropic functions of
q;, v9; their form is governed by the symmetry properties of the solid .1 If some or all
of the constituents ¥, %, ..., &, are acolotropic, we may expect that their properties will
also affect the forms of the functions ®® and this poses a joint invariance problem. We

T In effect, the space through which the fluids are flowing need no longer (as in §4) be isotropic.
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restrict attention here to the case where each of the diffusing substances is isotropic with a
centre of symmetry and in this case only the nature of the solid % need be taken into account
in determining the form of ®®. We suppose the solid & to be oriented as to that the vectors
h, (or the x, axes) coincide with the principal crystal axes. The invariance condition for
the functions ®® may therefore be written

DO = DO (g;; pyy v) = DO(Gys p,, B), (5:5)
where, as before G, = Myq,, VP = M1, (5°6)

but M;, belong to the appropriate subgroup -# of the full orthogonal group defined by
(4-17).

If the quantities I, (p = 1,2,..., N) form an integrity basis for the invariants of the
system of vectors v, under all transformations of the subgroup .# and @, (" = 1,2, ..., N)
form the corresponding system of invariants of v, and q which are linear in the components
g;, then we may write

V
O = ON(Q,,1,) = ¥ Q, ¢, (5-7)
p=1
I3 ¥ aQ LA r r
v - 3 Sy, g —apuy), (59)

where ®® and ¢ are scalar polynomials in the arguments indicated which are dependent
also upon p,.
The determination of the invariants for a given subgroup .# may be carried out using
the techniques of classical invariant theory. We list here some of the more important cases.
(1) Hemihedral isotropic materials. The group # describing the symmetry of the solid &
is the proper orthogonal group and the invariants 7, in (5-7) and (5-8) are (Weyl 1956)

Vv (1), [vwvl (reEsstEr) (i), (5:9)
In this case, we obtain from (5-8)

n— n

n
(r) () A(r) (8) (D) A(r) .
W = Zl Rl AR +1€ijkvjs Ui’ Plsns (5:10)
P

1
s=1 l=s
where ¢{7), ¢} are polynomials in the invariants (5-9) and ¢;;, is the alternating tensor.

(ii) Holohedral isotropic materials. Here the group # is the full orthogonal group and the
invariants 7, are given by (5-9) (1). In this case the diffusive forces ¥{” take the form

7
v = 3 o, (511)
2

#(3 being polynomials in the invariants (5-9) (i).
(iii) Transversely isotropic bodies. If the solid & is transversely isotropic with respect to
the y; (or x,) direction, the functions ®® are form invariant under the transformation

Y=Yy, ya:Maﬁyﬂ (“9ﬂ:2>3>> (5'12>

where M, My, =M, M, =9, Myl =1 (0,f,7=2,3), (5-13)
and also under the transformation

(J1:¥25Y3) = (Y15Y25 —Y3)- (514)

75-2
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618 J. E. ADKINS
The invariants /, are then (Adkins 19605)
0, V..V, (5-15)
and the functions W{" take the form
WP 3 o4+ 0, 4, (5:16)

s=1
where ¢}, ) are polynomials in the invariants (5-15).

(iv) Triclinic system. The triclinic system contains two crystal classes. In the pedial
class the functions ®® are form-invariant only under the identity transformation, and the
diffusive forces ¥, are then general vector polynomial functions of the components v{®.
In the pinacoidal class, the functions @ are form invariant under the central inversion
y; = —Y;, the invariants /, are the products

800 (5,k=1,2,3;5,t=1,2,...,n), (5:17)

and the components ¢ take the forms
n
W = 3 o ¢ (5:18)
s=1

where ¢{,, are polynomial tensor functions of the invariants (5-17).

(v) Rhombic (orthotropic) system. This system contains three classes. To examine these,
we define the transformations

Ryt (71,92 75) = (=492 Y3), 1

D2 (41, 92Ys) = (41, =¥ "‘%):J

and denote by (R,,D,), (R;,D;) the transformations obtained by replacing (1,2,3) by
(2,3,1) and (3,1, 2) respectively in (5-19).

The transformations characterizing the rhombic-pyramidal class are R,, Ry, D,. For this
class, the invariants I, are

o, Vv, oY (s,0=1,2,...,n), (5-20)

(5-19)

and the diffusive force components W take the form
n n
Wi = 0,60+ 2 005" 953+ 2. 0 v DS, (5-21)
§= 5=

where the functions ¢?), ¢7} and @f}} are polynomials in the invariants (5-20).
For the rhombic-disphenoidal system, the functions ®® are form invariant under the trans-
formations D, D,, D;. The invariants , are then

00, P, 90, PP e (s, hu=1,2,...,n) (5-22)
and the components ¥{” become
n
(r) — () ) () () (&) 1)
Vi = 21 {01101 9T + 01008 B5,) + 0508 BLEL
o
n n
; ’ () D) ¢ — .
+ Zx tZl {00090 G0+ 000 WP G5 + 00V 0 8} (r=1,2,..,m), (5 23)
o R

where the functions g7}, 4%}, are polynomials in the invariants (5-22).
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In the case of the rhombic-dipyramidal system, the transformations characterizing the
symmetry properties are R;,R,,R,;, D;,D,,D;, together with the central inversion
y; = —1y;; the invariants are

00, 0P, v (st e=1,2,..,1), (5-24)

and for the components ¥{” we have
n
— () ¢ () (r (5 ¢ — .
Vi = Zl {00 00 %) + 00V 4155 + 0308 B50)  (r=1,2,..,m), (5-25)
=

where ¢{7}, are now polynomials in the quantities (5-24).

These results for the triclinic and rhombic crystal classes may be obtained by the
methods developed by Smith & Rivlin (1958) and given in Green & Adkins (1960). Other
crystal classes may be examined in a similar manner. The results of an extensive investiga-
tion of the invariants for a vector and symmetric second-order tensor under the trans-
formations characterizing the crystal classes are given by Smith, Smith & Rivlin (1963).

In the present section attention has been confined to the forms for the diffusive forces ¥,.
For inviscid fluids (including gases) it is reasonable to suppose that the isotropic forms for
the stresses are unaffected by the presence of an aeolotropic solid #. In the case of viscous
fluids, however, it is conceivable that the stress-deformation relations would become
aeolotropic during diffusion through the solid &. This implies a coupling between the
properties of & and the fluids & which requires further investigation and is not considered
here.

6. CURVILINEAR CO-ORDINATES

Formulae in curvilinear co-ordinates are readily derived by tensor transformations.
We quote here the main results for reference later.
We choose a fixed system of curvilinear co-ordinates & defined by

& =E(y), &=E(0,0). (61)
The operators @D/D¢, D/D¢ given in (2-4) and (2:5) then become

“D¢ 94, om D¢ ¢
ot D

where w®™, w™ are the contravariant components of the vectors v,, v, respectively, referred
to the system &, and the comma denotes covariant differentiation with respect to &.

The contravariant components 704 of the stress tensor o, referred to the system & are
obtained by the usual tensor transformation

70 ggz 9¢’ o$, (6-3)

+w"g ., (6-2)

and the equations of continuity (2:10) and (2-11) and of motion (2-12) are replaced by
0p, 136+ (p,wm) = 0,)

dp/at+ (pwm) ,, = 0,)

and 7%+ p, (OF W) = p (Jw®i[ot+w®muw®i ) (r not summed), (6-5)

respectively. In (6:5) @F¢, @Y% are the contravariant components of the corresponding
extraneous and diffusion body forces F,, ¥, acting on the component <.

(6-4)
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620 J. E. ADKINS

The relations (3-3), (3-4) for ¢{) remain unchanged, and 7% is given by (6-3). For an
1sotropic non-Newtonian fluid, however, (3:8) may be replaced by

7O = (—p,+¢§) GY+ ¢ dO + 9 dO% 4Ok (r not summed), (6-6)
where GY is the contravariant metric tensor for the system &,
49 = GHd, A0 - GRAV, dp — Bulfy b)) (- GRap),  (6)
and ¢, 47, ¢4’ are functions of p, which are polynomials in the invariants
d0%,  dOLdO%  dOLdOFdOL (r not summed). (6-8)

For a mixture of fluids, the contravariant components of the diffusion forces ¥,, may,
from (4:19) and (4:12) be written

n—1
O =3 (=) g, (6:9)
s=1

where ¢@) are scalar polynomials in the invariants (4-18) (i).

Corresponding results for a system of fluids diffusing through a rigid solid are derived
from those of §5 by tensor transformations. When the solid is isotropic and holohedral,
equations (5-11) are replaced by

n
O 3wy, (6:10)
s=1

where ¢{} are polynomials in the invariants (5-9) (i).

7. RELATION TO CLASSICAL THEORY: FICK’S LAW

For two-component mixtures, and for a single fluid diffusing into a rigid solid, we may,
with special assumptions, derive from the foregoing theory the classical diffusion equations
based on Fick’s law.

In the case of a two-component mixture we make the following assumptions:

(1) The diffusing substances are perfect fluids with a similar linear pressure-density
relation.

(ii) The velocity and acceleration components are sufficiently small for the inertia
terms in the equations of motion and for products of velocities in the expressions for the
diffusive forces to be neglected.

(i11) The total density p = p; + p, of the mixture is constant.

(iv) Extraneous body forces are absent.

From the assumptions (ii) and (iv), the equations of motion (2-12) become

0K [0y, +p, Vi =0 (4= 1,2; unot summed). (7-1)
The assumption (i) implies that
0'%):—[7”8%, xlb,u:kp,u (/u: 192)3 (72)

where £ is a constant and p,, are the fluid pressures for the two components.
If we take v, = v, in (4+12) so that

U, =Vv,—V,=u (say), u,=0, (7-3)
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and make use of (2-14), we have
P\¥) = —p ¥, =g, (7-4)

where « is a scalar function of p;, and p,. Also, from (2:3), (2:7) and (7-3), the diffusion
velocities U, and U, are given by

U, /py =—Uy/p, = u/p. (7-5)
If we now choose
o = —kp,p,/(Dp), (7-6)
where D is a function of p,, p,, and write
¢y :lov/pa (V= 1,2), (77)
we obtain, by combining (7-4) to (7-7) with (7-1) and (7-2) and using assumption (iii),
Fick’s law ¢,U,=—Dgradc¢,, ¢,U,=—Dgradc,, (7-8)

connecting the concentrations ¢, and the diffusion velocities U,.
If we made use of the equations of continuity (2-10) and (2-11) we find that

o ) Fag () = SL g o]

10

vz = [ (V) —v,) ] = —= div U,)), 7-9
p 3y, (o1 (v — )] 0 (1 Uy) (7-9)
and this relation, with the first of (7-8) yields the standard diffusion equation
De¢,/Dt = div (D grad ¢,). (7-10)

A corresponding equation holds for c,.
In the case of a single fluid of density p diffusing into an anisotropic solid with velocity v,
the components of the diffusive force ¥ referred to Cartesian co-ordinates y;, may be written

as pV; = ;0;, (7-11)
where «; is a tensor function of p and v;. Equations analogous to (7-1), (7-2) then yield
—k(dp/dy;) +a;;v; = O, (7-12)
where £ is a constant. As a special case of (7-12) we have the anisotropic form of Fick’s law
pv, == —D,(3p|dy,), (7:13)
where D; is a tensor function of p, and «; is chosen in (7-12) so that
w; Dy = —kpdj, (7-14)

d;, being the Kronecker delta. From (7-13) and the equation of continuity (2-11) we obtain
immediately the anisotropic diffusion equation
dp 0 ap
ot = oy Pidg) (7:18)
In (7-10) and (7-15) all velocity components are regarded as being small so that to the
first order of small quantities, the operators D/D¢ and 7/d¢ are equivalent.
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622 J. E. ADKINS

In the classical case, we observe from (7:6) to (7-8) that a large value of « corresponds to
a small value of D, and therefore to a slow rate of diffusion. Conversely, a small
value of & corresponds to a rapid rate of diffusion. In the non-linear theory this corresponds
to the situation where the diffusive forces ¥, are small and the equations of motion for the
individual components are loosely coupled. As we might expect, each constituent then
moves freely with comparatively little interference from the others. We note further that
in (7-8) D is positive so that from (7-6) « is negative. In the general theory, we should
expect the diffusive force ¥, to oppose the motion of the constituent &. In this case, the
quantities ¥{” become negative definite functions of their arguments.

STEADY-STATE SOLUTIONS

8. STEADY-STATE DIFFUSION THROUGH A RIGID PLATE

We consider the steady-state diffusion of a fluid through a holohedral isotropic rigid
plate or slab, bounded in the Cartesian system x; (or y,) by the faces y, = a,, ¥, = a,
(a, > a, > 0). For the fluid we assume a constitutive equation of the form (3-5) and we
suppose the flow to take place in the y, direction. We therefore write

(01,25,03) = (v,0,0), v=20(y;) (" =1y, (8:1)
and in this case, writing 4 = A,; we have
Ay =0y Ay = Az = A1y = Aypy = Ay = 0, (8-2)

where a prime denotes differentiation with respect to y;.
From (5-9) and (5-11) the components ¥; of the body force vector ¥, =¥ take the form
(W, Wy, W) = (v, 0,0), (83)

where « is a scalar polynomial in »? which is also a function of the density p at the point y;.
The stress components o;; for the fluid are given from (3-5) and (8-2) by
Ty = Qo+ @10+ P02, 0y = 033 = ¢0>} (8-4)

Tpg == Og3 = 033 = 0.

where ¢, ¢,, P, are functions of p and polynomials in v’
In the absence of extraneous body forces the equations of motion (2-12) therefore yield
Ao+, 0"+ g0%) [y, + pre = pvv’, (8:5)
the second and third equations being satisfied identically if we assume p to be a function
only of y,. The equation of continuity (2-10) yields

d(pv)[dy, =0 or pv=k, (8-6)
where £ is a constant. Combining this with (8:5) we obtain
A(go+ 10" +@y0"2) [0y, + ko = kv’ (87)

When p is eliminated from ¢, ¢, and ¢, by means of (8-6), (8-7) becomes a second order
differential equation for the determination of ». If « is a constant, a first integral of this
equation may be obtained immediately in the form

Pot10" + P02 Ry, = kv +K, (8:8)
where £’ is a further constant of integration.
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To make further progress we require a knowledge of the functional forms of ¢, ¢, and ¢,
in terms of p and v’. In the classical case (see, for example, Crank 1956), ¢, and ¢, are taken
as zero, the inertia term £v’ is neglected in (8-7) and

o = Ap = kAo, (8:9)

where 4 is a constant. This classical approximation assumes that £ is small in comparison
with unity and with @ and that v = O(k). The term £v is then small in comparison with the
remaining terms in (8-8) and for a first approximation to p we have the linear form

p— (K —kay) /A (K —hay, +0). (8-10)
The small velocity v is given, to a first approximation, by
v =kA|(K' —kay,) (K —Fkay, = 0). (8:11)

If the small term kv in (8-8) is taken into account a second approximation to p and v
based upon (8-10) and (8-11) is readily obtained in the form

. k,__k“_yl ! 4
P=" [H (k'_kany]*O(k )>

k4 k24 5
v k’——kayl[l“ (k'—k(xyl)2]+0(k )-

The constants £ and £’ in (8-10) to (8-12) may be determined from a knowledge of the
density p at the faces y, = a;, y; = a,.

(8-12)

9. STEADY DIFFUSION THROUGH FLUID IN LAMINAR FLOW

The theory of §§ 2 to 4 may be used to investigate either the interdiffusion of several fluids
or the flow of a mixture of fluids. We examine first a steady state problem which may be
regarded as a combination of the diffusion and mixed flow problems.

We suppose that fluid 1 is in steady state laminar flow such that particles in y,, y5
planes at the current time ¢ are moving in the y,-direction A second fluid is diffusing
steadily into fluid 1 so that in addition to the motion in the y, direction characterizing the
laminar flow of fluid 1, the particles of fluid 2 also have a velocity component in the y,
direction. The velocity components at the point y; for the constituents of the mixture may
therefore be taken as

(1)(11), v, 0(31)) = (U: 0,0), U= U(yz) (ﬂuld 1), } (9 1
(R 0) = (10,0),  w=uly), v=oly) (uid 2), /
respectively, and the corresponding densities are p;, p,.
From (9-1) and (3-4) we see that
o U o0 0 %4 0
ap =3 0 o, Ap—|w v o, (9-2)
0 0O O 0 0 O

the prime denoting differentiation with respect to y,.

76 VoL. 255. A.
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We consider non-Newtonian fluids with constitutive equations of the form (3-8); a corre-
sponding analysis for more general visco-elastic liquids presents no difficulty of principle.
From (9-2) and (3-8) we obtain for fluid 1

o) = 0 = —pyHgot g U4, o) = —py -+, (9-3)
()'(112) = %¢1 U s 0'(213) == 0'%11) =2 0, )
and for fluid 2 0 = — 4 Dy + 1u'2D,,
— 120
0B = —po+Dy+0' O, + (Fu'2+2'2) Dy, (94)

0F == Pyt Dy,
0 = Yu' (O, +v'D,), oF = oF - 0.

Here and subsequently, to simplify the notation when considering a mixture of two fluids
we write, in (3+5), (3-8) and (6:6) ¢V = ¢, (fluid 1) and ¢? -~ @, (fluid 2) (v = 0,1,2).
In (9:3), p1, ¢o, ¢, and @, are functlons of p, and ¢, ¢,, ¢, are also polynomials in the in-
variants (3-7). From (9-2) we see that this implies that ¢,, ¢, and ¢, are polynomials in U".
Similarly p,, ®p, ®, and @, in (9-4) are functions of p, and from (9-2) and (3-7) we infer
that @,, ®,, ®, may be regarded as polynomials in »" and «2

Writing in (4-12) v, = Vy, U, =V, —V,, U, = 0, we see from (9-1) and (4-19) that the
diffusive force components W for fluid 1 are given by

(lF(ll)ﬁ \F(2D> ‘Fi(il)) = [(U'V u) Xy — V&, 0]’ (9.5)
where a is a polynomial in the invariants (4-18) (i), or in the present instance of
(U240, (9-6)

with coefficients which are functions of p,, p,. The corresponding components ¥{? for fluid
2 are given, from the second of (2-14) by

p WP = p W (97

We examine the possibility of flow in which p,, p,, #, and p, are functions only of y,. In
the absence of extraneous body forces, the equations of motion (2:12) combined with (9-3)
to (9-7), yield d

d . (8)
gy (P U pn 0 (uid 1),
4y, (@@ 20, (U ) 2yt
(99)

g [mpz + @ +0' Dy (fu -+ 0"2) By prve = pyov” (fluid 2).

In the steady flow considered, dp,/dt = dp,/dt == 0. The equation of continuity (2:10) is
thus satisfied identically for fluid 1 but for fluid 2, we have

d(pyv)/dy, =0 or pyv=E§F, (9-10)
k being a constant.
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If p, and p, can be regarded as known functions of p,, p, then (9-8) to (9-10) represent a
system of five equations for the determination of U, u, v, p,, p, as functions of ,.

By making use of (9-10) in the first of (9-9) and combining the resulting equation with the
first of (9-8) we obtain

P U +u' (D, +0" D) = 2ku+ K, ; (9-11)
similarly from the second equations of (9-8) and (9-9) we obtain
—(p1+p2) + o+ Dp+0' Q-+ 3 UGy + (u?+0"%) Oy = kv + K, (9-12)

K, and K, being constants of integration. Equations (9-11) and (9:12) are first order
differential equations involving U, z and v and may be regarded as first integrals of the
equations of motion.

When both fluids are in laminar flow, so that v = 0, equations (9-8) and (9-9) reduce to

d(, U")dyy 20, (U—) 2 0, \

/ . [ (9’13)
d(—py+do+16,U?)/dy, = 0 (fluid 1),
d(®,2) [dy,—2p,(U—u) & = 0, } (9-14)
d(—p2+ P+ Dou?)/dy, = 0 (fluid 2),
respectively, and (9-10) is satisfied identically.
In this case the second of equations (9-13) and (9-14) integrate to yield
4p, = 4¢, -+, U2+ K],
b= 414U K] 015,
4py = 4@+ D,u"? + Ky,
and from the first of each pair of equations we obtain
$ U+ = Ky, (9-16)

where K}, K;, K; are constants.
The system of equations (9-13) and (9-14) is evidently satisfied if p,, p,, p;, and p, are
constants and U and « have the linear forms

U=u=ay,+b, (9-17)

where a and b are constants. In this case, the mixture is homogeneous and remains so
throughout the motion.

More generally, (9-13) and (9-14) form a system of four differential equations involving
U, u, p\, py, py and p,. These may be solved, in principle, if we postulate, for compressible
fluids, relationships of the form

b =Sip)s o =So(p2) (9-18)

between the partial pressures p,, p, and the densities p,, p,. These relationships assume that
the pressure-density relationship for either constituent is unaffected by the presence of the
other. More generally, we might assume coupled relationships of the form

P =S1(p1sp2)s D2 = Salp1s py)- (9-19)

For an incompressible mixture, p = p, + p, is indeterminate and is, in general, a function
of position which is determined from the field equations and the boundary conditions. The
total density p = p, 4 p, is independent of p. If the density of the mixture is also independent

of its composition then p = p,+py — constant. (9-20)

76-2
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More generally, we might suppose that although a mixture of given composition is incom-
pressible, the density p varies as we vary p,, p,. In this case we have a functional relation

f the f
of the form P = pitpy = flp1s o) (9-21)

Either of the relations (9-20) or (9-21) implies a known functional relationship between
py and py.

To complete the system of field equations for an incompressible mixture, we require
a further relationship involving the partial pressures p,, p, and the densities p;, p,. If

E(py; ps 15 2) = 0, (9-22)

then this relation, together with (9-20) or (9-21) may replace (9-18) or (9-19). Asaparticular
case of (9-22) it is plausible to suppose that the ratio of the partial pressures p,, #, depends
upon the composition of the mixture. This will evidently be the case for a homogeneous
mixture at rest which is subjected to a hydrostatic pressure. We may therefore write

Dilbr = Fi(prs p2) (9-23)
or, rather less generally, Dbilbs = Fy(p1/ps), (9-24)

where £ is a monotonic increasing function of p; and a monotonic decreasing function of
py such that F,(0, p,) = 0, Fi(p;,0) = oo and F,(x) is a monotonic increasing function of
x such that F,(0) = 0 and F,(x) ->c0 as x —c0. Dimensional considerations support a rela-
tionship of the form (9-24).

If a solution of the system (9-13), (9-14) can be found in which U and « do not have the
linear form (9:17) then in general, from (9-15), the partial pressures p,, p, and the densities
P15 po Will be constant throughout the fluid only if ¢, and ®, are independent of ' and U"?
and ¢, and @, are both zero. This suggests that if a homogeneous mixture of non-Newtonian
fluids is subjected to a non-uniform laminar flow, the constituents will tend to separate out,
this separation occurring as a specifically non-Newtonian effect.

10. FLow OF MIXTURE BETWEEN ROTATING CYLINDERS

We consider a mixture of two non-Newtonian fluids contained in the annular space
between two infinitely long concentric circular cylinders of radii a;, a, (a; > a,). We suppose
the cylinders to rotate about their axis with different uniform angular velocities Q;, €,
respectively and examine the possibility of steady two-dimensional flow in which each
particle of fluid moves uniformly in a circular path around the axis. This problem has been
examined theoretically by Rivlin (1948, 1956), Oldroyd (1950, 1951) and others for single-
component non-Newtonian and visco-elastic fluids, and experimental investigations of
anomalous effects have been carried out by Weissenberg (1947), Greensmith & Rivlin
(1953) and others. In the present instance we neglect gravitational effects.

In a system of cylindrical polar co-ordinates we denote the current position of a particle

P of fluid by (r,0,y;) where y, = rcosf, y, = rsind, (10-1)

and the y, direction coincides with the axis of the cylinders. We suppose that at P, the par-
ticles of fluids 1 and 2 have angular velocities w, Q respectively about the axis of the cylinders,
w and Q being functions only of r.
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We choose the curvilinear co-ordinates £ of § 6 so that

(gla 529 53) = (7‘, 0,?/3), (10.2)

and the covariant and contravariant metric tensors G;;, GY are given by

(Gy1y Gogy Gs3) = (1,7%,1), Gi=1/G; (inot summed),} (10-3)
Gi=Gi=0 (i=]).
For fluid 1, the contravariant velocity components w®? are given by

(M, wh2, w®3) = (0,0, 0), (10-4)
and the mixed and contravariant components dVi, dD% of the rate of deformation tensor are

0 %' 0 0 10 0
dVi =10’ 0 0], dY =3 0 0}, (10-5)

0 0 0 0 0 O

the prime denoting differentiation with respect to r.
If we assume constitutive equations of the form (6-6), the components 7% of the stress
tensor for fluid 1 take the form

PON 2,022 4 b 1220,
0B — _p 4 g (10-6)

012 = 14/ D13 = 7023 — 0,

where, from (6-8) and (10-5), ¢, ¢, and ¢, are polynomials in 7?02, The quantities p, ¢@,,
$1, ¢, are also functions of the density p,.
- Equations corresponding to (10-4) to (10-6) hold for fluid 2, with the index 1 replaced
by 2 throughout and w, ¢y, ¢,, ¢, replaced by Q, @,, ®,, O,, respectively.

From (6-9), the contravariant components VW% of the diffusive body force for fluid 1

are given by (VL 2, OP3) = [0, (0— Q) a, 0], (10-7)
where a is a function of the densities p;, p, and, from (4-18) (i), is a polynomial in 7?(0 — Q)2.
For fluid 2, we have, from (2'14:) ,02(2)11:'{.2. — _Iol(])\yi. (10'8)

For steady-state motion in which there is cylindrical symmetry, the equations of motion
(6-5), with (10-3), (10-4), (10-6) and (10-7) yield, for fluid 1

d :

dr (—p1+¢o+1r%0"%py) = —p 0,

L d (10-9)
o3 dr (Po'¢y) +py(0—Q) a =0,

the third equation being satisfied identically if we assume p, and p, to be functions only of r.

Similarly for fluid 2 we have

ad; (—po+ D+ 172 0,) = —p, QQ’;]
1 d ,
Qﬁd”r(’3Q(D1)“‘P1(w—Q)“:0- ]

The equations of continuity (2-10) are satisfied identically.

(10-10)
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If p, and p, are regarded as known functions of p; and p, through relations of the form
(9-18) or (9-19), then (10-9) and (10-10) may be regarded as four differential equations
for the determination of w, £, p, and p, as functions of 7. In the case of an incompressible
fluid, we may eliminate p, and p, from (10-9) and (10-10) by means of (9-20) or (9-21) and
(9-22), (9-23) or (9-24), and these equations then serve to determine o, £, p, and p,. We
observe that p, and p, are not, in general, constants. The components of an initially homo-
geneous mixture will therefore tend to separate out during the rotation, the variation with
radius of the composition of the mixture in any final steady-state motion depending upon
the angular speeds €2, (), of the outer and inner cylinders and upon the constitutive equa-
tions for the fluids and for the diffusive force. This effect is analogous to that for plane
laminar flow discussed in § 9.

From the second of (10-9) and (10-10) we readily obtain a first integral in the form

(W' g,+ QD) = K, (10-11)

where K is a constant. If centrifugal forces can be neglected, the first of equations (10-9) and
(10-10) can be integrated to yield

4(p1—po) = r*0" %y +-ky, }

10-12
4y @) = LD 1y o

k, and k, being constants of integration. The resultant normal stress across planes y, — con-
stant is therefore, from (10-6) and the analogous equation for 7(233,

703347233 = — 12(w'2h, 4 O2D,) + &, + £y} (1013)

If fluid 2is an ideal fluid, for which @ = ®, = ®, = 0, then from (10-10) provided « - 0,
Q=uw, dp,/dr = pyw?, (10-14)

and from (10-9) rw’'¢, = constant. (10-15)

If p, o ¢y and ¢, are known functions of p;, and ', equations (10-15) and the first of
(10-9) serve to determine p; and w. The second of (10-14) may then be regarded as an
equation for p,. Although the angular speeds of the two fluids are now identical, we cannot
conclude that the radial distribution of densities is uniform.

WAVE PROPAGATION

11. PROPAGATION OF PLANE WAVES THROUGH A MIXTURE

The equations of §§ 2 to 4 may be expected to imply anomalous effects in the propagation
of waves in mixtures. We examine here the propagation of plane progressive waves through
a homogeneous two-component mixture which is infinite in extent and is at rest apart from
the infinitesimal disturbance produced by the wave motion.

We consider a wave of angular frequency w propagated in the x, direction of the rect-
angular Cartesian reference frame x;. The velocity components ', /? for fluids 1 and 2,
respectively are therefore given by

oY = a; exp [i(kx,—0f)], o2 = b exp [i(kx, —of)], (11-1)
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where a;, b; and £ are constants. The densities p;, p, of the two fluids may be written

pr=pr+Hprexp [i(ke,—or)],  py = Pyt py exp [i(kx, — )], (11-2)
where 7,, p, are the constant densities in the initial rest state and p}, p; are constants such
that g} <7y, 3 < Py.

We assume constitutive equations of the form (3-8) and make the additional assumption
that the partial pressures #,, p, can be related to the densities by relations of the form (9-18).
To the first order in p; we may therefore write

b1 = pr+prexp [i(kx, —wi)], (11-3)
where pr=hp1), pr=cip, ¢ =[dfi(p)/dp1] =50 (11-4)
and corresponding relations hold for p,.
For the small disturbance represented by (11:1) we neglect squares and products of
small quantities and take the constitutive equations (3-8) in the classical form
o,=(—p,+A,trA)I+24,A, (v=1,2;vnotsummed), (11-5)

where A, and g, are functions of the corresponding density p, and to a sufficient degree of
approximation may be regarded as constants. From (11-1) to (11-5), the stress components
o3P for fluid 1 become

o) = —py+[ikay (A, + 2,) — p1] exp [i(kx, —wt)],
o3 = 0§y = —p, + [ika, A, —p] exp [i(kx, — wi)], (11-6)
o), = ika,p, exp [i(kx, —0t)] (y=2,3), o} =0.

The components ¥V of the diffusive force acting on constituent 1, may, from (4-19)

and (11-1) be written in the form
W = (P —oP) a = (a;—b;) aexp [i(kx, —ot)], (11-7)

J J 4

where, to the first order in a;, b,, p; and pj, a is a constant and as before, we have taken
U, = V;—V,, u, = 0. For fluid 2, the diffusive force components are given by

p VP = —p, WP, (11-8)

In the absence of extraneous body forces, the equations of motion (2:12), with (11-4),
(11-6), (11-7) and y; = x;, yield

\

(A1 (a+iw) — k(A +2u,)] ay — Py aby —ike, py = 0,} (11-9)
[, (a+i0) K] @, —Frab, — 0 (7 —2,3),
Similarly, for the component 2, we obtain
[77‘1“+iw:/52—k2(/12+2ﬂ2>] by—pyaay —ikeypy = O,} (11-10)
P10+ 1By —B] by, —proa, — 0 (y —2,3),

With (11-9) and (11-10) must be coupled the equations of continuity which, from (2-10),

(11-1) and (11-2) yield kpya,—wp; = O’l (11-11)

kpyby—wpy = 0.]

As in the case of single component solids or fluids we may consider separately transverse

waves and longitudinal waves. Here, however, the presence of the diffusive force has the
effect of coupling the waves which would be present in either of the media alone.
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12. TRANSVERSE WAVES

From the second of (11-9) and (11-10) we obtain by eliminating a,, b, the secular equation

Koy poy — R2 [Py 0y + o) 10 (Po iy + 7y o) ]+ [16PP 00— 071 o] = O (p = Py +p,). (12-1)
If we assume that o is real and positive, then from (12-1) by a straightforward formal
calculation, we obtain for £2 the complex values

B =K, +il, (v=1,2), (12-2)

where Ky, Ky = [pramm+p) £ cosx]/(2m ), |

_ _ ) (12-3)
Ly, Ly = [0(Bypy -+ Py o) £ fsin 31/ (2 1),

with
= prat(py -+ po) 0 (Popty — Py o) * 207 0202 (Po iy — Py fho)® (4 15— Bty o) s

cot 2y = ﬁ%“z(ﬁl+ﬂ2)2‘”w2(p2ﬂ1’—ﬁ1ﬂ2)2. (12-4)

20p, o(py — phy) (Pofiy — Py fhy)

From (12-2) it follows that

k= i'}’V(COS lﬁﬂ‘l sin 1//1)) = (kv_l"llv) (SaY) (V =1, 2): (125)
where £,, [, are real and
yi—Ki+L3,  tan2y,— LK, (v—1,2). (12:6)

Of the four solutions (12-5), two yield values for £ with positive real parts. From (11-1)
we see that these represent waves travelling in the positive #, direction; the remaining
solutions represent waves travelling in the opposite direction. In either case, from (11-1)
it follows that the wave is attenuated during propagation if £, and /, have the same sign,
thatisiftany, = [ [k, is positive. Ifk, and /, have opposite signs, that is, if tan ¢, is negative,
the wave builds up during propagation and we shall assume that this situation cannot
occur. The condition for stability may evidently impose a restriction upon the constants
occurring in the constitutive equations for the fluids and the diffusive force.

If both tany, and tany, are positive, we may thus obtain from (12-1) two different
solutions for £ for any given angular frequency w. These correspond to two different waves
travelling with different speeds and suffering different amounts of attenuation and dis-
persion. When the diffusive force is large, so that the terms in « predominate in (12-1) one
value of k2 becomes very large, and for the other we have, approximately, the finite value

iwp . wp
eo o () 197

ta -ty U et ) e
This corresponds to the case in which the two liquids diffuse only slowly into each other.

If the diffusive force, and therefore a, is small, equations (11-9) and (11-10) may to a first
approximation be regarded as uncoupled. In this case we obtain the solutions

k= (1H) JBol(28)) (v =1,2), (12:8)

corresponding to wave propagation in each of the fluids in the absence of the other. We
observe that in each of these two extreme cases the situation is stable and an attenuated
wave is obtained.
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It is of some interest to examine the situation corresponding to a real wave number £
and a complex angular frequency w. In this case, by writing v = w, +iw,, where v; and w,
are real, and separating real and imaginary parts in (12-1) we obtain

0, £[A/(7:7) ——w%]%,} n29)
0y = I'(2p,p5),
where U ="ppya—F(Poty+ Py 1), } (12-10)
A = B[R g pty— Py (i + o) ]

We assume that the expression in brackets in the first of (12-9) is positive, so that w, is real.
Equations (11-1) then represent a disturbance which is periodic in x; and which decays
exponentially with time provided w, is negative. It is readily seen from (12-9) and (12-10)
that this is, in general true, for in these equations p,, p,, #; and p, are positive quantities,
and as indicated in § 7, it is physically reasonable to assume that o is negative.

From (12-9) we see that o, is real if

I'2— 45,5, A < 0.
If I"?—4p,p, A > 0 then we may have w; = 0 and
0 = [T (T2 45,7, AV 1/(25, 7). (12:11)

These values of w, are both negative, giving a disturbance which is non-periodic in time
and decays exponentially with time provided I is negative and A > 0.

13. LONGITUDINAL WAVES

If we eliminate a,, b;, p; and p; from (11-10) and the first equations of (11-8) and (11-9)
we obtain

P, (a+1iw) — k%, —p,0 —ike, 0
—p0 Pro+16p,— K2y 0 —ike,
k7, 0 o 0 |
0 kp, 0 —w

or
kX0, Ky—¢1CoP) Pot10(cy Py KaCaPoky) }
+ k0D [prc—a(k) + ko) ] —10[py a(p) ¢) +Pycy) + w2 (P £y ‘l‘ﬁz’fl)]}
6, (ipa— ) — O, (13:1)

where Ky = A +20y, Ky =A3+2, €=+, (13-2)

The relation (13-1), regarded as an equation in 2, is similar in structure to (12-1), with
coeflicients of £* and £ zero and the remaining coefficients complex. We may therefore
obtain solutions for £ analogous to (12-5), two of which yield real waves, suffering attenua-
tion and dispersion during propagation provided the appropriate values of £, and /, have
the same sign.

As in the case of transverse waves, when the diffusive force, and hence «, is small the two
values of k2 tend towards the values which would be obtained in either fluid in the absence

77 Vor. 255. A.
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of the other. If the diffusive force is sufficiently large for the terms in « to predominate in
(13-1) we obtain, for the finite values of the wave number
B i0%

W(ky+Kg) +1(P1 6, +Pa60)

k2 (13-3)

When o is large compared with unity, the finite values (12-7) and (13-3) for £ may be
derived directly from (11-9) to (11-11) if we observe that in this case ¢; ~ b, Writing
b, = a,+a; o where a; are finite constants, and discarding terms of order 1/« in the resulting
equations, we obtain a system of equations linear in a;, 4;, p;, p5. The elimination of these
constants leads to the values (12-7), (13-3) for £2.

It is of some interest to consider the propagation of longitudinal waves through a homo-
geneous mixture of gases whose densities p;, p, and pressure density relationships do not
differ greatly from each other. In this case we write

AV:/‘V:KV:O (V:]'72)9“

o, , (13-4)
Py = p1-6py, 02:01+€C1>}

where ¢ is a small (constant) parameter and p; and ¢; are constants. When the gases are
identical in physical characteristics, so that p, = p;, ¢, = ¢, we may choose b, = ¢, and
ps = p1. The equations derived from the first of (11-9) and (11:10) then become identical
and equations (11-11) also yield only one distinct equation. In this case, as might-be
expected, the mixture behaves as a single-constituent gas.

When p, and ¢, are given by (13-4) we write

bl = al‘l—ﬁais loflz = :01 +6pl1l9 (13'5)

where a; and p] are constants. By introducing (13-4) and (13-5) into (11-11) and the first
equations of (11-9) and (11-10) and eliminating a,, a;, py, p7 from the resulting equations
we derive in place of (13-1) the secular equation

| iwp, 0 —ike, 0 {
iwp,  py(2¢+iw) —ikey —ike, |
1 fl 71(2a+1w) c1 1 +0(e) = 0, (13-6)
kp, 0 —w 0
kp; kp, 0 —0 \
and neglecting terms of order ¢ this yields
k? = ?[c 1),
- " } (13-7)
or k% = w(0—2ix) e, (i1).

The first of these values of 4% corresponds to the unattenuated wave which would be
propagated in the single-constituent gas characterized by the constants 7,, ¢,. For the second
value we may write from (13-7) (ii)

k* = R2%(cos 2y +1sin 2¢), (13-8)
where R? = o(w?+402)}/c,, \ 13-0
cos 2 = /(w2 +402)¥,  sin 2y — —2a/(w?+ 402)}. | (13:9)
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If, as discussed in § 7, « is negative, cos 2y and sin 2y are both positive, and we may choose
0 < 2¢ < $#. In this case, £ takes the form

k =+ (A+iB), (13-10)
where, remembering (13-9)

A = Rcosy = {w[ (0?42} +0]/(20)) 1, 13-11
B =Rsiny = {‘”[(“’2+4“2)%—w]/(201)}%-} (8-10)

are both positive. From (11-1) we infer that the values (13-10) for £ imply waves which
are attenuated; the attenuation is rapid for large values of B, that is, for large values of «.

The author wishes to thank Professor A.E.Green, F.R.S., for helpful comments and
discussions on a draft of this paper.
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